MATH SOLVE

5 months ago

Q:
# Type the correct answer in each box. Use numerals instead of words. If necessary, use / for the fraction bar(s).Rewrite the following equation in the form y = a(x - h)2 + k. Then, determine the x-coordinate of the minimum.

Accepted Solution

A:

Given: y = 2x^2 - 32x + 56

1) y = 2 [ x^2 - 16x] + 56

2) y = 2 [ (x - 8)^2 - 64 ] + 56

3) y = 2 (x - 8)^2 - 128 + 56

4) y = 2 (x - 8)^2 - 72 <----------- answer

Minimum = vertex = (h,k) = (8, - 72)

=>Β x-ccordinate of the minimum = 8 <-------- answer

1) y = 2 [ x^2 - 16x] + 56

2) y = 2 [ (x - 8)^2 - 64 ] + 56

3) y = 2 (x - 8)^2 - 128 + 56

4) y = 2 (x - 8)^2 - 72 <----------- answer

Minimum = vertex = (h,k) = (8, - 72)

=>Β x-ccordinate of the minimum = 8 <-------- answer